Terakreditasi SINTA 4 sesuai SK Dirjen Diktiristek, Kemenbudristek Republik Indonesia, No. 204/E/KPT/2022

Nomor : 14833/K-1/LOA/Komp/VIII/2023

Lamp : -

Perihal : Pemberitahuan Persetujuan Penerbitan Artikel

Kepada Yth,

Bapak/Ibu/Saudara/I Putu Aryastana

di

Universitas Warmadewa

Assalamu'alaikum wr.wb.

Teriring salam dan doa, semoga kita senantiasa berada dalam lindungan Allah SWT. Aamiin. Dengan surat ini kami selaku dewan redaksi **Jurnal Komposit: Jurnal Ilmu-Ilmu Teknik Sipil**, Program Studi Teknik Sipil Fakultas Teknik dan Sains Universitas Ibn Khaldun Bogor menyampaikan bahwa:

No. Artikel: 14833

Judul Artikel : Perencanaan Jalan Alternatif di Desa Tiyingtali – Tumingal,

Kabupaten Karangasem, Provinsi Bali

Penulis : I Wayan Ditya Maha Diva, Anak Agung Rai Asmani K., Putu

Aryastana

Afiliasi : Universitas Warmadewa

Berdasarkan penilaian dari *reviewer* terhadap artikel yang telah Bapak/Ibu/Saudara ajukan, maka diputuskan bahwa artikel tersebut **DISETUJUI** untuk dapat dipublikasikan dalam **Jurnal Komposit: Jurnal Ilmu-Ilmu Teknik Sipil, Vol. 8 (1) 2024**, yang akan diterbitkan pada minggu pertama bulan **Februari 2024**, dengan URL Penerbitan Artikel https://ejournal.uika-bogor.ac.id/index.php/komposit/article/view/14833.¹

Demikian surat pemberitahuan persetujuan penerbitan artikel (*Letter of Acceptence*) ini kami sampaikan. Atas perhatian dan kerjasamanya kami ucapkan terimakasih.

Wassalamu'alaikum, Wr. wb.

Bogor, 23 Agustus 2023

KOMBetua Dewan Redaksi Jurnal Komposit,

Dr. Feril Hariati, S.T., M.Eng. NIK. 410 100 280

¹ URL akan aktif setelah artikel diterbitkan.

Perencanaan Jalan Alternatif di Desa Tiyingtali – Tumingal, Kabupaten Karangasem, Provinsi Bali

I Wayan Ditya Maha Diva¹, Anak Agung Rai Asmani K.¹, Putu Aryastana¹

¹ Program Studi Teknik Sipil, Universitas Warmadewa

Email: iwayandityamahadiva061@gmail.com; asmaniwijaya01@gmail.com; aryastanaputu@yahoo.com

ABSTRAK

Jalan merupakan akses yang menghubungkan satu tempat dengan tempat lainnya dalam satu daratan. Perencanaan jalan alternatif ini bertujuan mengurangi waktu tempuh dari jalan yang sudah ada. Penelitian ini dilakukan beberapa langkah yaitu: perumusan masalah, survey lokasi, pengumpulan data, pengolahan data sehingga didapatkan analisis yang relevan. Lokasi penelitian akan direncanakan pada ruas jalan Tiyingtali – Tumingal, Kecamatan abang, Kabupaten Karangasem. Hasil penelitian ini menghasilkan perhitungan secara teknis untuk Aliyemen Horizontal dengan beberapa jenis tikungan yang dihasilkan, yaitu: 1 (satu) unit tikungan Spiral Circle Spiral, dan 2 (dua) unit Tikungan Spiral Spiral. Dengan tebal perkerasan jalan, yaitu Surface Course 2,5 cm, Base Course 10 cm dan Sub Base Course 10 cm. Sehingga pengguna jalan dapat melintas dengan aman dan nyaman.

Kata Kunci: alinyemen horizontal, tikungan, tebal perkerasan.

ABSTRACT

Road is an access that connects one place to another in one land. This alternative road planning aims to reduce travel time from existing roads. This research was carried out in several steps, namely: problem formulation, location survey, data collection, data processing so that relevant analysis is obtained. The research location will be planned on the Tiyingtali - Tumingal road section, Abang District, Karangasem Regency. The results of this study produce technical calculations for Horizontal Alignment with several types of bends produced, namely: 1 (one) unit of Spiral Circle Spiral bend, and 2 (two) units of Spiral Spiral Bend. With thick pavement, namely Surface Course 2.5 cm, Base Course 10 cm and Sub Base Course 10 cm. So that road users can pass safely and comfortably."

Key words: alinemen horizontal, bends, thickness of pavement

Submitted:	Reviewed:	Revised	Published:
25 Jan 20XX	15 Feb 20XX	18 Feb 20XX	01 August 20XX

PENDAHULUAN

Perencanaan geometrik jalan merupakan bagian dari perencanaan jalan yang dititik beratkan pada perencanaan bentuk fisik sehingga dapat memenuhi fungsi dasar dari jalan yaitu memberikan pelayanan yang optimum pada arus lalu lintas dan sebagai akses kerumah rumah (Ferdinandus & Lewaherilla, 2017). Tujuan dari perencanaan geometrik jalan adalah untuk menghasilkan kondisi geometrik jalan yang mampu memberikan pelayanan lalu lintas secara optimum sesuai dengan fungsi jalan (Bethary, 2016). Perencanaan geometrik jalan ini sendiri mentitik beratkan pada perencanaan alinyemen horizontal dan alinyemen vertikal sehingga dapat memenuhi fungsi dasar jalan yang memberikan kenyamanan yang optimal pada arus lalu lintas sesuai dengan kecepatan yang direncanakan (Kairupan, 2022). Alinyemen horizontal adalah proyeksi sumbu jalan pada bidang horizontal, terdiri dari bagian lurus dan lengkung (Saodang, 2010) (Fauzi, 2022). Alinyemen vertikal adalah perpotongan bidang vertikal dengan bidang permukaan perkerasan jalan, melalui sumbu /as

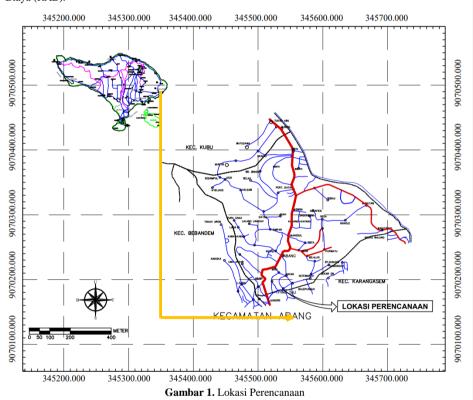
jalan, yang umumnya disebut profil/penampang memanjang jalan (Saodang, 2010).

ISSN: 2615-3513

e-ISSN: 2655-934X

Kabupaten Karangasem khususnya di desa Tiyingtali dan Tuminggal keterbatasan sarana transportasi masih menjadi permasalahan baik dari segi akses penghubung jalan maupun medan yang dominan berupa perbukitan yang menyebabkan pergerakan lalu lintas baik barang maupun manusia dapat dikatakan kurang efektif. Perkerasan yang dipakai dalam perencanaan ini yaitu perkerasan lentur (flexible pacement). Perkerasan lentur adalah salah satu jenis konstruksi perkerasan bidang permukaan jalan dengan bahan campuran beraspal sebagai lapisan permukaan, serta bahan berbutir dalam hal ini agregat sebagai bahan lapisan bawahnya (Rahmatullah, 2021). Alasan perencanaan ini menggunakan perkerasan lentur dikarenakan fungsi jalan pada perencanaan ini yatu jalan lokal yang dimana harus memperhitungkan secara ekonomis sesuai dengan kondisi setempat, dan tingkat keperluan sehingga kontruksi perkerasan jalan yang direncanakan itu adalah yang optimal. Perencanaan Ruas Jalan Tiyingtali - Tumingal

Commented [A1]: Abstrak belum mencapai minimal 150 kata.


tambahkan keterangan sbb: metode yang digunakan dalam perencanaan, dimensi (lebar) jalan, kecepatan rencana di tikungan, dan RAB.

dimulai dari STA 0 + 000 sampai dengan STA 1 + 200. Perencanaan ini bertujuan untuk mendapatkan perencanaan jalan yang aman, nyaman, dan ekonomis. Sehingga memudahkan untuk mencapai suatu lokasi dan menghasilkan suatu tingkat kenyamanan dan keamanan bagi pengguna jalan. Tujuan studi saat ini adalah untuk dapat merencanakan Alinyemen Horizontal, Alinyemen Vertikal, tebal perkerasan jalan alternatif berdasarkan data lalu lintas pada ruas Tiyingtali-Tumingal, dan Rencana Anggaran Biaya (RAB).

METODE PENELITIAN

Tempat dan waktu penelitian

Lokasi perencanaan jalan yang dilakukan penulis terletek di Desa Tumingal, Kecamatan Abang, Kabubaten Karangasem, Provinsi Bali. Perencanaan jalan ini direncanakan mulai dari STA 0 + 000 sampai dengan STA 1 + 200. Gambar lokasi penelitian ditunjukan pada gambar dibawa

Data Perencanaan

Data Lalu Lintas

Data lalu lintas ini didapatkan melalui Dinas PUPR Kabupaten karangasem yang merupakan data lalu lintas tahun 2021 (Tabel 1).

Data CBR

Data CBR ini didapatkan melalui Dinas PUPR Kabupaten Karangasem yang merupakan data lalu lintas tahun 2021 (Tabel 2).

Tabel 1. Data Lalu Lintas

No	Jenis Kendaraan	Data Lalu Lintas
1	Kendaraan Ringan 2 Ton	60
2	Bus Penumpang	0
3	Truck 2 as 13 Ton	1
4	Truck 2 as 20 Ton	0
	Total (kendaraan)	61

(Sumber: Dinas PUPR Kab. Karangasem, 2023)

Commented [A2]: Ukuran font pada tabel dan gambar TNR 10 Jenis tabel yang digunakan hanya garis horizontal saja

Tabel 2. Data CBR

	,	,
No	STA	CBR
1	0 + 000	6,31
2	0 + 100	5,31
3	0 + 200	5,39
4	0 + 300	5,27
5	0 + 400	5,28
6	0 + 500	5,25
7	0 + 600	5,42
8	0 + 700	4,92
9	0 + 800	5,19
10	0 + 900	5,51
11	1 + 000	5,20
12	1 + 100	5,07

(Sumber: Dinas PUPR Kab. Karangasem, 2023)

Analisis Data

Analisis data pada jurnal ini membahas mengenai persamaan yang di pakai dalam perencanaan geometrik jalan dan perkerasan lentur, data yang dipakai dalam perkerasan lentur yaitu : CBR yang digunakan: 4.9, reliabilitas (R): 75, deviasi normal standar (ZR): -0.674, gabungan standar eror untuk perkiraan lalu lintas dan kinerja (So): 0.45, indeks permukaan (IP): 2,5 modulus resilen (MR): 7350, Ipt: 2, Ip0: 4, jumlah beban gandar tunggal standar kumulatif (Wt18): 6549. Persamaan-persamaan yang digunakan dalam analisis perencanaan adalah (Bethary, 2016); (Surwardo & Haryanto, 2016); (Iskandar, 2016); (Sugiyanto, 2016); (Sinaga, 2019); (Putri, 2019); (Lubis, 2019); (Rahmatullah, 2021); (Miranti, 2021); (Fauzi, 2022); (Rahmawati, 2022):

Jh=0.278V.t +
$$\frac{V^2}{254(f\pm L)}$$
(2)

Jh=0.278V.t +
$$\frac{V^2}{254(f\pm L)}$$
(2)
Rmin = $\frac{V^2}{127(e+fm)}$ (3)

$$\theta s (S - C - S) = \frac{90Ls}{\pi R}$$
(4)

$$Lc = \frac{(\Delta - 2\theta s) * \pi R}{180} \qquad(5)$$

$$p = \frac{Ls^2}{6R} - R(1 - \cos\theta s) \qquad(6)$$

$$k = Ls - \frac{Ls^3}{40R^2} - R * \sin\theta s \qquad(7)$$

$$p = \frac{Ls^2}{6R} - R(1 - \cos\theta s) \qquad(6)$$

$$k = Ls - \frac{Ls^3}{40R^2} - R * sin\theta s$$
(7)

$$Ts = (R+p) * tg\left(\frac{1}{2}\Delta\right) + k \qquad \dots (8)$$

$$Es = \frac{(R+p)}{\cos(\frac{1}{2}\Delta)} - R....(9)$$

$$Xs = Ls \left(1 - \frac{Ls^2}{40*R^2}\right)....(10)$$

$$Ys = \frac{Ls^2}{6*R}...(11)$$

$$\theta s (S - S) = \frac{1}{2}\Delta \qquad(12)$$

$$Xs = Ls \left(1 - \frac{Ls^2}{40*R^2}\right) \dots (10)$$

$$YS = \frac{1}{6*R}....(11)$$

$$\theta s (S - S) = \frac{1}{2} \Delta \qquad \dots (12)$$

$$p = \frac{Ls^{2}}{6R} - R(1 - \cos\theta s) \qquad(13)$$

$$k = Ls - \frac{Ls^{3}}{40R^{2}} - R * \sin\theta s \qquad(14)$$

$$Ts = (R + p) * tg(\theta s) + k \qquad(15)$$

$$E = \frac{R+p}{\cos\theta s} - R \qquad(16)$$

$$E = R' \left[1 - \cos\left(\frac{28.65jh}{R'}\right) \right] \qquad(17)$$

$$L = \frac{Ajh^{2}}{120+3.50jh} \qquad(18)$$

$$L = 2S - \frac{120+3.5jh}{A} \qquad(19)$$

$$L = \frac{AV2}{R} \qquad(19)$$

$$k = Ls - \frac{Ls^3}{40R^2} - R * sin\theta s \qquad \dots (14)$$

$$Ts = (R+p) * tg(\theta s) + k \qquad \dots (15)$$

$$E = \frac{R+p}{\cos\theta s} - R \qquad \dots (16)$$

$$E = R' \left[1 - \cos\left(\frac{28.65jh}{R'}\right) \right] \qquad \dots (17)$$

$$L = \frac{Ajh^2}{120+350jh} \qquad \dots (18)$$

$$L = 2S - \frac{120 + 3.5jh}{1....(19)}$$

$$L = \frac{AV2}{380} \qquad(20)$$

$$L \le 50A$$
 (21)

$$L = 2S - \frac{1}{A} \qquad (19)$$

$$L = \frac{AV2}{380} \qquad (20)$$

$$L \le 50A \qquad (21)$$

$$L = \left(\frac{Vr}{3.6}\right)xT \qquad (22)$$

$$Ev = \pm \frac{AxL}{800} \qquad (23)$$

$$L_{min} = \frac{jh^2}{405} \qquad (24)$$

$$U = R h \qquad (25)$$

$$L_{min} = \frac{jh^2}{405}$$
 (24)
 $U = B-b$ (25)

$$U = B-b$$
 (25)
 $Bt = n(B+C) + Z$ (26)

$$Ab = Bt - Bn$$
 (27)

Rc = radius lanjur sebelah dalam -
$$\frac{1}{2}$$
 lebar perkerasan + $\frac{1}{2}$ b (28)

$$MR (psi) = 1500 \times CBR$$
 (29)

$$Wt = W18 x ((1+g)^n - 1)/g$$
 (30)

Log₁₀ (W₁₈) =
$$Z_R$$
 x S₀ + 9.36 x log₁₀(ITP+1)-
0.20+ $\frac{log_{10}(\frac{\Delta IP}{IPO^{-1P}})}{0.40+\frac{log_{10}(\frac{\Delta IP}{ITP+1})^{5}}{0.40+\frac{log_{10}(\frac{\Delta IP}{ITP+1})^{5}}{0.40+\frac{log_{10}(\frac{\Delta IP}{ITP+1})^{5}}{0.40+\frac{log_{10}(\frac{\Delta IP}{ITP+1})^{5}}{0.40+\frac{log_{10}(\frac{\Delta IP}{ITP+1})^{5}}}$ + 2.32 x log₁₀(M_R) -

$$0.20 + \frac{1094}{0.40 + \frac{1094}{(ITP+1)^{5}.19}} + 2.32 \times log_{10}(M_R) - 8.07 \qquad(31)$$

Dengan:

absis titk SC pada garis tangen, jarak dari Xs titik TS ke SC (jarak lurus lengkung peralihan)

ordinat titik SC pada garis tegak lurus garis tangen, jarak tegak lurus ke titik SC pada lengkung

panjang lengkung peralihan

jarak dari PI ke busur lingkaran

sudut lengkung spiral

pergeseran tangen terhadap spiral absis dari p pada garis tangen spiral

Rd = jari jari desain

MR = modulus resilen

panjang tangen dari titik PI ke titik TS atau ke titik ST

lebar perkerasan yang di tempati satu kendaraan di tikungan pada lajur sebelah kanan

Rc = radius lengkung untuk lintasan luar roda depan yang besarnya dipengaruhi oleh sudut α

jarak pandang henti

kecepatan rencana

jari jari sumbu lajur dalam

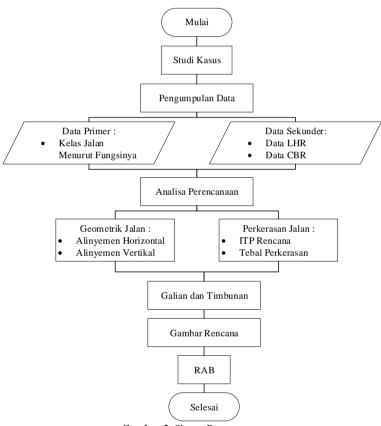
Commented [A3]: lihat komentar sebelumnya

Wt = beban gandar standar lajur rencana pertahun

b = lebar kendaraan

C = kebebasan samping kiri kanan kendaraan

n = jumlah lajur


Z = lebar tambahan akibat kesukaran mengemudi di tikungan

Bn = lebar total perkerasan pada bagian lurus
Bt = lebar total perkerasan di tikungan
Ab = tambahan lebar perkerasan di tikungan

CBR = california bearing ratio

Skema perencanaan

Perencanaan geometrik jalan dilakukan sesuai dengan metode Bina Marga dan perkerasan tebal jalan mengacu pada petunjuk perencanaan Tebal Perkerasan Lentur jalan Raya dengan manual desain perkerasan jalan (2018) dan pt T-01-2002-B. Berikut ini adalah skema perencanaan geometrik jalan dan perkerasan jalan dapat dilihat pada gambar 2.

Gambar 2. Skema Perencanaan

HASIL DAN PEMBAHASAN

Kriteria Perencanaan

Perencanaan ini menggunakan data lalu lintas yang diperoleh langsung dari Dinas PUPR Kabupaten Karangasem. Dari data tersebut diketahui jenis kendaraan dan jumlah kendaraan yang melewati jalan Tiyingtali - Tumingal dalam waktu 1 hari. Persamaan yang digunakan dalam perhitungan data lalu lintas adalah sebagai berikut, VLHR (Persamaan 1). Hasil perhitungan volume lalu lintas harian rata rata (VLHR) dapat dilihat pada Tabel 3.

Berdasarkan hasil perhitungan pada tabel 3, kendaraan ringan 2 ton yang melintas pada ruas jalan Tiyingtali - Tumingal sebanyak 60 kendaraan perharinya dan kendaraan truck 2 as 13 ton sebanyak 1 kendaraan perhari. VLHR **Jurnal Komposit: Jurnal Ilmu-ilmu Teknik Sipil** Vol. X No. Y (2023) pp. xx – xx DOI:

dihitung dengan mengalikan jumlah kendaraan/hari dengan EMP yang mendapatkan hasil untuk kendaraan ringan 2 ton yaitu 60 smp/hari dan untuk truck 2 as 13 ton yaitu 1.8 smp/hari. Total VLHR smp/hari pada ruas jalan Tiyingtali-Tumingal berjumlah 61.8 smp/hari.

Perhitungan Alinyemen Horizontal

Tikungan yang direncanakan pada perencanaan ini terdapat 3 buah tikungan yaitu satu (1) Tikungan S-C-S, dan dua (2) Tikungan S-S, data yang digunakan untuk menghitung alinyemen horizontal yaitu kecepatan rencana yang digunakan: 30km/jam, medan jalan: 28.30% (pegunungan), ungsi jalan: okal, Rdesain yang dipakai yaitu 51m. Perhitungan nilai θs (sudut lengkung spiral), Lc (panjang busur lingkaran), p (pergeseran tangen terhadap spiral), k (absis dari p pada garis tangen spiral), Ts (panjang tangen dari titik PI ke titik TS atau ke titik ST), Es (jarak dari PI ke busur lingkaran), Xs (jarak lurus lengkung peralihan), Ys (jarak tegak lurus ke titik SC pada lengkung) dihitung berturut turut dengan penggunaan Persamaan 5, 9, 10, 11, 12, 13, 14, 15. Hasil perhitungan alinyemen horizontal dapat dilihat pada Tabel 4.

Berdasarkan hasil perhitungan parameter tikungan pada Tabel 4, terdapat 3 tikungan diantaranya, tikungan P1 termasuk jenis lengkung Spiral-Spiral (S-S) dengan sudut lengkung spiral (θ s): 12.55°, panjang busur lingkaran (Lc): 0.014 m, pergeseran tangen terhadap spiral (p): 0.82 m, absis dari p pada garis tangen spiral (k): 13.76 m, titik dari tangen ke spiral (Ts): 25.3 m dan jarak dari PI ke busur lingkaran (Es): 2.09 m. Tikungan P2 termasuk jenis lengkung Spiral-Circle-Spiral (S-C-S) dengan sudut lengkung spiral (θs) : 14.04°, panjang busur lingkaran (Lc): 29.13 m, pergeseran tangen terhadap spiral (p): 0.52 m, absis dari p pada garis tangen spiral (k): 12.47 m, titik dari tangen ke spiral (Ts): 42.7 m, jarak dari PI ke busur lingkaran (Es): 8.73 m. absis titik SC pada garis tangen (Xs): 24.85 m, dan ordinat titik SC pada garis tegak lurus garis tangen (Ys): 2.04 m. Tikungan P3 termasuk jenis lengkung Spiral-Spiral (S-S) dengan sudut lengkung spiral (θ s): 15.16°, panjang busur lingkaran (Lc): 0.014 m, pergeseran tangen terhadap spiral (p): 0.26 m, absis dari p pada garis tangen spiral (k): 11.51 m, titik dari tangen ke spiral (Ts): 25.4 m, dan jarak dari PI ke busur lingkaran (Es): 2.11 m.

e-ISSN: 2655-934X

ISSN: 2615-3513

Pelebaran Tikungan

Pelebaran pada tikungan ini diperhitungan untuk pengguna jalan yang merasa kesulitan dalam mempertahankan lintasannya terutama untuk kendaraan berat. Pada perencanaan ini, data yang digunakan untuk menghitung pelebaran pada tikungan yaitu kecepatan rencana yang digunakan: 30km/jam. Rdesain: 51 m. lebar kendaraan: 2.5m, kebebasan samping kiri kanan kendaraan : 1m, jumlah lajur: 2 lajur, lebar jalan : 6m. Perhitungan nilai Rc, U (lebar perkerasanlebar kendaraan rencana), Bt (lebar jalan + pelebaran tikungan), \(\Delta b \) (pelebaran tikungan) dihitung berturut turut dengan penggunaan persamaan 25, 26, 27, 28. Hasil perhitungan pelebaran tikungan dapat dilihat pada Tabel 5. Berdasarkan hasil perhitungan pelebaran tikungan pada tabel 5, mendapatkan hasil pada titik PI 1, PI 2, dan PI 3 dimana nilai Rc: 48.25 m, lebar perkerasan yang ditempati satu kendaraan di tikungan pada lajur sebelah dalam (B): 3.15 m, lebar perkerasan – lebar kendaraan rencana (U): 0.65 m, lebar tambahan akibat kerusakan mengemudi di tikungan (Z): 0.44 m, nilai Bt:8.74 m, dan nilai Δb: 2.74 m.

Daerah Bebas Samping Tikungan

Jarak kebebasan samping ini diperhitungkan untuk memberikan jarak aman untuk para pengendara terutama kendaraan berat untuk melihat rintangan yang ada di depannya.daerah bebas samping tikungan ini menggunakan persamaan Lt lebih besar dari jarak pandang henti. Pada perencanaan ini, data yang digunakan untuk menghitung daerah kebebasan samping ditukungan yaitu kecepatan rencana yang digunakan 30 km/jam, jari jari tikungan 51 m, lebar 1 lajur 3m. Perhitungan nilai Jh (jarak pandang), E (daerah bebas samping tikungan) dihitung berturut turut dengan penggunaan Persamaan 2 dan 17. Hasil perhitungan daerah bebas samping tikungan dapat dilihat pada Tabel 6.

Berdasarkan hasil perhitungan jarak kebebasan samping pada Tabel 6, didapatkan hasil pada tikungan P1&P3 yaitu: panjang total lengkung (S): 50 m, jarak pandangan (jh): 30.62 m, jarak pandang pengemudi S<Lt, jari-jari sumbu lajur dalam (R'): 48 m, dan kebebasan samping (E): 7.67 m. Hasil perhitungan pada tikungan P2 yaitu: panjang total lengkung (S): 78.13 m, jarak pandangan (jh): 30.62 m, jarak pandang pengemudi S<Lt, jari-jari sumbu lajur dalam (R'): 48 m, dan kebebasan samping (E): 7.67 m

Tabel 3. Hasil Perhitungan Volume Lalu Lintas Harian Rata Rata (VLHR)

No	Jenis Kendaraan	Jumlah Kendaraan		VLHR (SMP/hari)	
1	Kendaraan ringan 2 ton	60	1	60	
2	Bus penumpang	0	1.8	0	
3	Truck 2 As 13 Ton	1	1.8	1.8	
4	Truck 2 As 20 Ton	0	3.1	0	
	Total	61		61.8	

Tabel 4. Hasil Perhitungan Alinyemen Horizontal

Titik	itik Vd R A I			LS	IC T	T:	S-C-S/S-S						
Huk	va	K	Δ	LS	Tipe	θ s	Lc	p	k	Ts	Es	Xs	Ys
PI 1	30	51	25.11	25	S-S	12.55	0.014	0.82	13.76	25.3	2.09	-	-
PI 2	30	51	60.81	25	S-C-S	14.04	29.13	0.52	12.47	42.7	8.73	24.85	2.04
PI 3	30	51	30.33	25	S-S	15.16	0.014	0.26	11.51	25.4	2.11	-	-

Tabel 5. Hasil Perhitungan Pelebaran Tikungan

Titik	Rc (m)	B (m)	U (m)	Z (m)	Bt (m)	Δb (m)
PI 1	48.25	3.15	0.65	0.44	8.74	2.74
PI 3	48.25	3.15	0.65	0.44	8.74	2.74

Tabel 6. Hasil Perhitungan Daerah Samping Tikungan

Titik	Vd	R	s	Jh	Jarak Pandang Pengemudi	R'	$\frac{28.65 \times S}{R'}$	E
P1	30	51	50	30.62	S <lt< td=""><td>48</td><td>18.28</td><td>7.67</td></lt<>	48	18.28	7.67
P2	30	51	78.13	30.62	S <lt< td=""><td>48</td><td>18.28</td><td>7.67</td></lt<>	48	18.28	7.67
P3	30	51	50	30.62	S <lt< td=""><td>48</td><td>18.28</td><td>7.67</td></lt<>	48	18.28	7.67

Perhitungan Alinyemen Vertikal

Perencanaan alinyemen vertikal berkaitan dengan besarnya volume galian dan timbunan yang didapatkan. Sebagai contoh, jalan yang cenderung mengikuti muka tanah asli akan menghasilkan volume galian dan timbunan yang relatif kecil sehingga mengakibatkan biaya yang ditimbulkan menjadi relatif murah. Pada perencanaan ini, data yang digunakan untuk menghitung alinyemen vertikal yaitu: elevation dan jarak, data tersebut diperoleh melalui software civil3D. Perhitungan nilai Jh>L (jarak pandang lebih besar dari panjang lengkung vertikal), Jh<L (panjang lengkung vertikal lebih besar dari jarak pandang) dihitung berturut turut dengan penggunaan Persamaan 18 dan 19. Hasil perhitungan alinyemen vertikal dapat dilihat pada Tabel 7.

Berdasarkan hasil perhitungan jenis lengkung vertikal pada tabel 7, mendapatkan hasil 2 jenis lengkung vertikal yaitu, pada STA 0+200.000 termasuk jenis lengkung vertikal cekung dengan panjang lengkung pakai sebesar 36.57 m, pada STA 0+593.250 termasuk jenis lengkung vertikal cembung dengan panjang lengkung pakai sebesar 51.11 m, dan pada STA 0+649.650 termasuk jenis lengkung vertikal cekung dengan panjang lengkung pakai sebesar 11.73 m. Hasil perhitungan Stasioner dan Elevasi pada PV1 dan PV2 dapat dilihat pada Tabel 8.

Berdasarkan hasil perhitungan stasioner dan elevasi masing-masing PVI pada Tabel 8, mendapatkan hasil pada lengkung PVI 1 elevasi PPV: 347.3987 m, STA PLV: 0+181.716, Elevasi PLV: 451.25 m, STA PTV: 0+218.284, dan Elevasi PTV: 409.74 m. Hasil lengkung PVI

2 elevasi PPV: 3858264 m, STA PLV: 0+587.386, Elevasi PLV: 365.83 m, STA PTV: 0+599.114, dan Elevasi PTV: 349.12 m. Berikut merupakan hasil gambar rencana dari alinyemen horizontal dan alinyemen vertikal yang di buat menggunakan sofware *civil3D*.

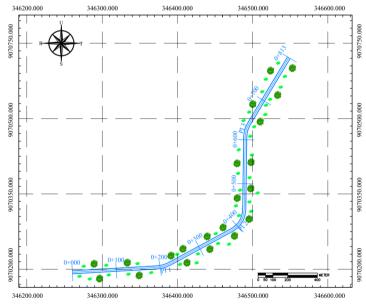
Berdasarkan hasil gambar alinyemen horizontal pada Gambar 3, jika dilihat pada gambar terdapat 3 tikungan diantaranya, pada PI 1 dan PI 3 termasuk jenis tikungan Spiral-Spiral (S-S), PI 2 termasuk jenis tikungan Spiral-CircleSpiral (S-C-S) dengan panjang total jalan yaitu

ISSN: 2615-3513

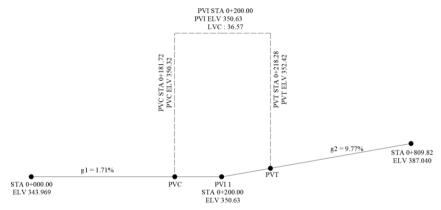
e-ISSN: 2655-934X

Berdasarkan hasil gambar alinyemen vertikal PVI 1 pada Gambar 4, jika dilihat pada gambar terdapat jenis lengkung vertikal cekung yaitu, pada STA 0+200.000 dengan panjang lengkung pakai sebesar 36.57 m.

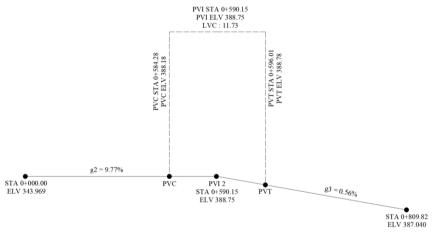
Berdasarkan hasil gambar alinyemen vertikal PVI 2 pada Gambar 5, jika dilihat pada gambar terdapat jenis lengkung vertikal cembung yaitu, pada STA 0+590.15 dengan panjang lengkung pakai sebesar 11.73 m.


Tabel 7. Hasil Perhitungan Alinyemen Vertikal

812.33 m.


STA	Elemetica	Floretion	Elavation	Florestion	Involver	Gra	dien	A (0/)	Landana	I (malmi)
SIA	Liavation	Jarak (m)	g1 (%)	g2 (%)	A (%)	Lengkung	L (pakai)			
0+000.00	343.969	200.000								
0+200.00	347.395	393.250	1.71%	9.77%	-8.06%	Cekung	36.57			
0+593.25	385.825	216.570	9.77%	0.56%	9.21%	Cembung	11.73			
0+809.82	387.04	0.000	0.56%							

Tabel 8. Hasil Perhitungan Stasioner dan Elevasi

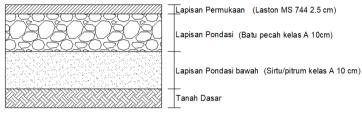

Lengkung	Elv PPV	STA PLV	Elv PLV	STA PTV	Elv PTV
PVI 1	347.3987	0+181.716	451.25	0+218.284	409.74
PVI 2	385.8264	0+587.386	365.83	0+599.114	349.12

Gambar 3. Hasil Gambar Alinyemen Horizontal

Gambar 4. Hasil Gambar Alinyemen Vertikal PVI 1

Gambar 5. Hasil Gambar Alinyemen Vertikal PVI 2

Perencanaan Perkerasan


Perencanaan perkerasan yang digunakan yaitu perkerasan lentur, adapun data yang diperoleh untuk menghitung tebal lapisan perkerasan yaitu: CBR yang digunakan: 4.9, reliabilitas (R): 75, deviasi normal standar (ZR): -0.674, gabungan standar error untuk perkiraan lalu lintas dan kinerja (So): 0.45, indeks permukaan (IP): 2.5 modulus resilen (MR): 7350, Ipt: 2, Ip0: 4, jumlah beban gandar tunggal standar kumulatif (Wt18): 6549. Perhitungan nilai MR (modulus resilen) Wt (beban gandar standar lajur rencana pertahun), ITP (indeks tebal permukaan) dihitung berturut turut dengan penggunaan Persamaan 29, 30, 31. Hasil perhitungan tebal perkerasan dapat dilihat pada Tabel 9.

Tabel 9. Hasil Perhitungan Tebal Perkerasan

No	Jenis Lapisan	Nilai (cm)
1	D1	2.5
2	D2	10
3	D3	10

Berdasarkan hasil perhitungan tebal lapisan perkerasan pada Tabel 9, didapatkan hasil pada jenis lapisan D1 dengan nilai tebal perkerasan sebesar 2.5 cm, jenis lapisan D2 dengan nilai tebal lapisan perkerasan sebesar 10 cm, dan jenis lapisan D3 dengan nilai tebal lapisan sebesar 10 cm. Penampang rencana perkerasan dapat dilihat pada Gambar 6.

ISSN: 2615-3513 e-ISSN: 2655-934X

Gambar 6. Hasil Gambar Tebal Perkerasan Lentur

Berdasarkan Gambar 5, lapisan permukaan menggunakan aspal beton (Laston) dengan tebal lapisan sebesar 2.5 cm, pada lapisan pondasi atas menggunakan batu pecah kelas A dengan tebal lapisan sebesar 10 cm, pada lapisan pondasi bawah menggunakan pasir batu (sirtu/pitrum kelas A) dengan tebal lapisan sebesar 10 cm, pada tanah dasar menggunakan jenis tanah asli untuk galian dan jenis tanah urug untuk timbunan.

Perhitungan Rencana Anggaran Biaya (RAB) Perencanaan ini menggunakan Analisa Harga Satuan Pekerjaan (AHSP) bidang Bina Marga tahun 2022. Berdasarkan perhitungan volume tiap pekerjaan dan harga satuan pokok kegiatan, maka diperoleh biaya total konstruksi pada Tabel 10.

Berdasarkan hasil perhitungan rencana anggaran biaya (RAB) pada pekerjaan persiapan, volume yang didapat disesuaikan dengan panjang total jalan yang direncanakan yaitu sebesar 813.33 m, volume galian yang diperoleh sebesar 57,103.29 m³, volume timbunan yang diperoleh sebesar 85,410.6 m³. Pekerjaan perkerasan untuk lapis aus sebesar 270.936 ton, agregat kelas A sebesar 429.612 m³, dan sirtu kelas A sebesar 492.612 m³. Total anggaran yang harus dikeluarkan sekitar Rp 15,268,910,149.95.

Tabel 10 Hasil Perhitungan Rencana Anggaran Biaya (RAB)

No.	1	Uraian Pekerjaan	Volume	Satuan	Harga Satuan Pekerjaan (Rp.)	Jumlah Harga (Rp.)
1	Peke	rjaan Persiapan				
	1.1	Pembersihan	813.33	LS	3,571.00	2,904,751.16
	1.2	Pengukuran	813.33	LS	714.00	580,953.49
2	Peke	rjaan Tanah				
	2.1	Galian Tanah	57103.29	m3	28,584.00	1,632,234,024.00
	2.2	Timbunan Tanah	85410.6	m3	136,795.00	11,683,763,799.00
3	Peke	rjaan Perkerasan				
	3.1	Lapis Aus (Gradasi				
	3.1	Halus/Kasar)	270.936	Ton	984,676.00	266,784,842.00
	3.2	Agregat Kelas A	429.612	m3	500,828.00	246,713,673.00
	3.3	Sirtu Kelas A	492.612	m3	104,202.00	51,331,070.00
					Jumlah	13,880,827,409.00
					PPN (10%)	1,388,082,740.00
					Total	15.268.910.149.95

KESIMPULAN

Berdasarkan hasil perencanaan yang sudah dilakukan maka penulis dapat menyimpulkan bahwa, Ruas pada STA STA 0+000 – 0+821.02 memiliki total 3 tikungan yaitu, 1 tikungan S-C-S, dan 2 tikungan S-S. Rencana Alinyemen Vertikal pada STA STA 0+000 – 0+821.02 terdapat 2 lengkung peralihan yang terbagi menjadi 1 lengkung vertikal cembung dan 1

lengkung vertikal cekung. Pada STA 0+000 – 0+821.02 menggunakan laston sebagai lapisan permukaannya, hasil perhitungan tebal perkerasan didapat yaitu, *surface course*: 2.5 cm, *base course*: 10cm, *sub base course*: 10 cm. Total rencana anggaran biaya pembangunan jalan alternatif Desa Tiyingtali – Tumingal, Kabupaten Karangasem, Provinsi Bali adalah Rp 15,372,462,240.76.

Commented [A4]: lihat komentar tabel

Untuk perkembangan perencanaan selanjutnya maka penulis bermaksud untuk memberikan masukan/saran yaitu, sisa galian yang diperoleh dapat digunakan untuk perencanaan alinyemen vertikal pada ruas jalan selanjutnya sebagai timbunan untuk lengkung cekung atau timbunan untuk dataran rendah, dan untuk perencanaan lebih lanjut bisa ditambahkan dengan perencanaan saluran drainase.

DAFTAR PUSTAKA

- Ferdinandus, A. V, & Lewaherilla, N. (2017).

 Perencanaan Geometrik Jalan dan Tebal
 Perkerasan (Analisa Komponen Method)
 Pada Ruas Jalan Masiwang-Airnanang
 Kabupaten Seram Bagian Timur Sta 40 +
 000-43 + 000. 3(1).
- Kairupan Mecky R E Manoppo, J. E., Waani, J. E., Kunci, K., Jalan, G., Mongondow Selatan, B., Horizontal, A., Vertikal, A., & Kolektor, J. (2022). Evaluasi Geometrik Jalan Pada Ruas Jalan Matali-Torosik Di Kabupaten Bolaang Mongondow Selatan Sepanjang 3 Km. Jurnal Sipil Statik, 10(1), 57–62.
- Lubis, M., Rangkuti, M., Ardan, M., Kunci, K.-K., Jalan, G., & Tikungan, A. H. (N.D.). Evaluasi Geometrik Jalan Pada Tikungan Laowomaru.
- Miranti, T., Purba, K., Poerwanto, J. A., Sasongko, R., Manajemen, M., Konstruksi, R., Sipil, J. T., Malang, P. N., Jurusan, D., & Sipil, T. (2021). Perencanaan Ulang Geometrik dan Perkerasan Lentur Jalur Lintas Selatan Lot 6 Sta. 1+400-Sta. 6+400 (Vol. 2, Issue 4). http://jos-mrk.polinema.ac.id/
- Putri, A., Langi, L., Waani, J. E., & Lintong, E. (2019). Evaluasi Geometrik Pada Ruas Jalan Manado-Tomohon Km 8-Km 10. Jurnal Sipil Statik, 7(3), 359–366.
- Rahmatullah, R., Sasongko, R., Manajemen Rekayasa Konstruksi Politeknik Negeri Malang, M., & Manajemen Rekayasa Konstruksi Politeknik Negeri Malang, D. (2021). Perencanaan Geometrik dan Perkerasan Lentur Pada Jalan Nangamiro-Jalan Pancasila, Kabupaten Dompu, Nusa Tenggara Barat (Sta 0+000-8+758) (Vol. 2, Issue 3). Http://Jos-Mrk.Polinema.Ac.Id/
- Sinaga, L., Sendow, T. K., & Waani, J. E. (2019). Evaluasi Geometrik Jalan Berdasarkan Standar Perencanaan Bina Marga. Jurnal Sipil Statik, 7(7), 819–826.
- Twidi Bethary, R., Fakhruriza Pradana, M., & Bara Indinar, M. (2016). Perencanaan Geometrik Jalan Alternatif Palima-Curug

- (Studi Kasus: Kota Serang). In *Jurnal Fondasi* (Vol. 5, Issue 2).
- Suwardo, & Haryanto, I. (2016). Perancangan Geometrik Jalan. Standar dan Dasar-Dasar Perancangan. Gajah Mada University Press.
- Fauzy, Rokhmawati, Rahmawati. (2022). Study Perencanaan Geometrik dan Perkerasan Lentur Jalan Jalut Lintas Selatan Lot 6 Karanggongso – Nglarap (Sta 0+000-Sta10+625) Kab. Trenggalek-Kab. Tulungagung.
- Direktorat Jendral Bina Marga. (1997). Tata Cara Perencanaan Geometrik Jalan Antar Kota, Dirjen Bina Marga 1997. 038, 54.
- Ditjend Bina Marga. (2002). Pedoman Perencanaan Tebal Perkerasan Lentur - Pt T-01-2002-B. 1-37.
- Silvia Sukirman. (1999). Dasar Dasar Perencanaan Geometrik Jalan. Cetakan Ketiga. Penerbit Nova, Bandung
- Shirley L. Hendarsin. (2000). Perencanaan Teknik Jalan Raya. Cetakan Pertama. Penerbit Polikteknik Negeri Bandung – Jurusan Teknik Sipil.
- Hamiran Saodang. Konstruksi Jalan Raya. Cetakan Kedua. Penerbit Nova, Bandung (2010)
- Saepurrahman Iskandar, A. (2016).

 Perencanaan Geometrik dan Perkerasan
 Ruas Jalan Batukaras-Madasari.

 Http://Jurnal.Sttgarut.Ac.Id
- Geometrik Jalan Ruas Jalan Kertawangunan-Kadugede Kabupaten Kuningan Egi Rizky Yuono, P., & Ir Martinus Agus Sugiyanto, D. (2016). Jurnal Konstruksi. In *Cirebon Jurnal Konstruksi: Vol. V* (Issue 2).

Commented [A5]: nama penulis terlalu banyak? (apakah alinyemen vertikal itu sseorang penulis?) mohon perbaiki metadata artikel mendeley nya